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ABSTRACT:  Learning unlabeled data in a drifting environment still receives little attention.  This paper 
presents a concept tracker algorithm for learning concept drift that exploits unlabeled data. In the absence of 
complete labeled data, instance classes are identified using a concept hierarchy that is incrementally 
constructed from data stream (mostly unlabeled data) in unsupervised mode. The persistence assumption in 
temporal reasoning is then applied to infer target concepts. Empirical evaluation that has been conducted on 
information-filtering domains demonstrates the effectiveness of this approach.    
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INTRODUCTION 

 
Combining labeled and unlabeled data in concept 

learning has gained its popularity since the past few 
years. With the proliferation of information on the 
Internet, unlabeled data become more widely 
available but acquiring labeled data still poses a 
bottleneck [9]. As such, unlabeled data can provide 
information that fills the gap in the labeled data.  

There are several existing algorithms for learning 
unlabeled data. Expectation Maximization (EM) 
algorithm [4], for example, works by iteratively 
revising a hypothesis that maximizes its likelihood. 
Co-training is a more recent method that exploits sets 
of distinct features in unlabeled data set [2]. Blum and 
Chawla develop an algorithm based on finding the 
minimum cuts in graph for combining labeled and 
unlabeled data [3]. Although the effectiveness of these 
methods is not questionable, these methods mainly 
assume the stability of learned concepts. Therefore, 
this assumption is not suitable for inducing target 
concepts that change over time such as in concept drift 
learning.  

A number of practical algorithms for learning 
concept drift [10][13][14][15][16] as well as its 
theoretical characterizations [1][7] have been 
developed in the past. The existing concept drift 
learning algorithm, however, do not incorporate 
unlabeled data and assume the availability of 
numerous labeled data in order to achieve 
performance at satisfactory levels. The assumption is 
certainly not realistic in real world application. This 
paper proposes a concept tracker algorithm that 
utilizes unlabeled data for learning concept drift in the 
presence of incomplete labeled data. 
 
PRELIMINARY OBSERVATIONS 
 

This section presents empirical and theoretical 
observations that motivate the approach described in 

this paper. Prior to discussing preliminary experiment 
results, it will briefly describe the experiment setup for 
obtaining the empirical finding. 

Following the standard in concept drift learning, 
the goal of experiments was to observe the perfor-
mance of system as target concepts change over time. 
Accordingly, the system was presented with a stream 
of data to learn sequentially, and its performances 
were measured on a fixed test set with respect to 
current target concepts at regular intervals after 
processing m consecutive instances. A period of 
incremental learning on the m-instance sequence and 
system’s performance measurement was then called a 
tracking cycle. The target concepts were made stable 
for twenty tracking cycles before changed to a 
different target concept set. Section experiments 
provides further experiment details. 

Figure 1 depicts the system’s performances over 
time from learning with completely and partially 
labeled data stream. The FULL-LABELED-DATA in the 
figure denotes a system that receives a new sequence 
of four labeled instances at each tracking cycle. 
Labeled data sets are given to the PARTIAL-LABELED-
DATA system only when target concepts are about to 
change (i.e. at tracking cycles 1, 21 and 41), 
amounting to five percent as many labeled data as 
learned by the FULL-LABELED-DATA system. 

The performances over time given by the FULL-
LABELED-DATA system, as shown by Figure 1, are 
typical in concept drift learning. The system’s 
accuracy drops when a concept drift occurs and then 
recovers over the next tracking cycles as the system 
receives more labeled data for learning new target 
concepts. In contrast, the PARTIAL-LABELED-DATA 
system has no way of improving its performances in 
the absence of labeled data. It also suffers from being 
unable to accurately learn the new target concepts 
from learning with partially labeled data. Due to 
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applying the same test set, its performances are 
constant at low accuracies and tracking cycles during 
which the target concepts are stable.  

 

 
Figure 1.  System’s performance over time on fullly 

and partially labeled data sets 
 

The above empirical observations are also well 
justified by existing theoretical finding. In concept 
drift learning, the drift rate ∆ is an essential parameter 
and denotes the probability that two successive target 
concepts disagree on a randomly drawn example [7], 
e.g. Prob(f(xm)≠f(xm+1)). Hence, a slower drift rate 
corresponds to learning from a data stream whose 
target concepts change less frequently, and vice versa. 
Helmbold and Long  provide theoretical bounds on 
the allowable drift rates that guarantee tractability with 
an error of at most ε as follows: 

)/1ln(

2

ε
ε

d
c

≤∆    (1) 

where c > 0, and d is the  Vapnik-Chervonenkis 
dimension of a concept/hypothesis. Because c and d 
values are constants, the bounds imply that the 
tracking problem is more difficult (i.e. producing 
higher error rates) on learning with fewer labeled 
instances per target concept (i.e. higher drift rates). 
 
A NOVEL APPROACH 

 
Reducing the rate of drift according to Equation 

(1) is apparently the only option for improving the 
performance of a concept drift learner. One of possible 
strategies for reducing the drift rate as considered in 
this paper is to fill the gap in labeled data with relevant 
unlabeled data.  The following describes an algorithm 
that infers the current label of each labeled instance, 
based on the instance classes, and expands it with 
relevant unlabeled data. 

Concept Tracker Algorithm 

Let's now assume that the associations between 
an instance and its concept class somehow can be 
identified. Let X be the instance spaces and C be the 
concept class spaces. The following defines two 
functions needed to access the instance-class 
associations: 
• δ: X → C is a function that, given an instance, 

returns the instance class.  
• ε: C → P(X) is a concept instantiation function that 

returns a set of instances covered by a concept 
class.  

Let Q = {+,−} be a set of labels and let IS = 
〈(x1,q1), …, (xn,qn)〉 for each xi∈X and qi∈ Q denote a 
sequence of n labeled instances (e.g., data stream) 
where an instance on the left side arrives earlier.  In 
Information Filtering domain, for example, an 
instance xi is a text document (or a Web page), and a 
label (or feedback) is given to the document whether it 
is relevant (“+”) or irrelevant (“−”). Figure 2 describes 
a Concept Tracker algorithm that takes IS as input and 
outputs a set of labeled concept classes RC and a set 
of expanded labeled instances RI. 
 

 

Figure 2.  Concept Tracker Algorithm (see the 
description of algorithm in text). 

 
The foundation for reasoning the label of each 

concept class in Step 2 is that of persistence 
assumption, which states that once a fact becomes true 
it remains true thenceforth until the fact is negated [5]. 
The persistence assumption enables reasoning the 
label of each concept class at any given time. Since 
the concept drift learning typically refers to current 

Input: IS=〈(x1,q1), …, (xn,qn)〉   a sequence of labeled 
instances where qi is the label of instance xi. 
Output:  RC, a set of labeled concept classes. 
              RI, a set of expanded labeled instances. 
Step 1.   Generate a stream of labeled concept classes by 

replacing each instance in IS with its 
corresponding concept. 

              Let CS = 〈(c1,q1), …, (cn,qn)〉 such that ci = δ (xi) 
for  each (xi,qi) ∈ IS and ci∈C. 
Step 2.   Infer the label of each distinct concept class. 

         Let RC = {( , )}
ii i cc q ∈C  where C is a set of 

distinct concepts occurring in the stream CS 
and  qi is the label assigned to  the most 
recent ci in CS. 

Step 3.  Instantiate each distinct concept class in RC by 
replacing the concept class with all instances 
it covers. 

              Let RCqciCXj iiij
qxRI ∈∈= ),()( )},}{({ ε  
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target concepts, the class labels can be simply inferred 
from the most recent labels assigned to concept 
classes. The following presents the illustrating 
example for the concept tracker algorithm. 

Suppose IS = 〈(x1,+), (x2,+), (x3,−), (x4,−), (x5,−), 
(x6,−), (x7,+), (x8,+)〉  (the input of the concept tracker 
algorithm) is the original data stream (e.g., a set of 
relevance feedback documents). Let {x1, x3, x8, x12, 
x13} be a set of instances belong to class c1 such that 
δ(x1)=δ(x3)=δ(x8)=δ(x12)=δ(x13)=c1 and ε(c1)={x1, x3, 
x8, x12, x13}.  Similarly, let {x2, x6, x9, x11} and {x4, x5, 
x7, x10, x14} be the sets of classes belong to c2 and c3 
respectively. Classes c1, c2, c3 can represent document 
topic categories in Information Filtering domain. The 
stream of labeled classes generated by Step 1 in Figure 
2 is thus CS = 〈(c1,+), (c2,+), (c1, −), (c3,−), (c3,−), (c2, 
−), (c3,+), (c1,+)〉.  Step 2 will generate distinct 
concepts RC={(c1,+), (c2, −), (c3,+)} based on the 
most recent labels assigned to concept classes (i.e., 
“+” is the most recent label assigned to classes c1 and 
c3). Finally, all distinct classes in Step 3 are 
instantiated to produce more complete sets of labeled 
instances  RI={({x1, x3, x8, x12, x13},+), ({x2, x6, x9, x11}, 
−), ({x4, x5, x7, x10, x14},+)}. 

Any concept learner suitable for a domain can 
then be applied to learn the instance set RI. The 
learner can also take advantage the identified concept 
classes RC if necessary. When the input IS changes, 
the outputs must be entirely re-generated and re-
learned. Despite the simplicity of the Concept Tracker 
algorithm, its effectiveness depends largely on the 
reliability of the δ function for identifying the instance 
classes. The next section provides the detail of the 
approach in handling unlabeled data in order to realize 
δ and ε functions. 

 
Identification of Instance Classes  

This paper uses a concept hierarchy for 
establishing the association between an instance and 
its concept class. The concept hierarchy is 
incrementally built from labeled and unlabeled data 
observed from the stream in unsupervised mode. 
Thus, during the course of learning it grows 
dynamically as it sees more instances. The cluster 
hierarchy is basically a tree structure with the 
following characteristics: (1) all leaf nodes represent 
instances and (2) all internal nodes represent concepts 
that generalize those of their descendants. Given a 
concept c, which is an internal node in the concept 
hierarchy, ε(c) returns a set of leaf nodes that are 
descendant of node c. Distinct concepts emerge from 
concepts in the hierarchy that distinctively partition 
instances. Obviously, these distinct concepts are the 

most appropriate concepts for representing the classes 
of all instances underneath.  

A recently developed concept formation system is 
employed for constructing the concept hierarchy 
needed [17][18]. One of the concept properties 
generated by the system is concept density, which is 
calculated from the average distance to the nearest 
neighbor among the child concepts. The concept 
density in the hierarchy tends to decrease along the 
path to the root. At any time, a set of distinct, non-
overlapping concepts can be identified from the 
concept hierarchy by thresholding the concept density 
information. The distinct concepts identified, 
however, could change as the concept hierarchy is 
updated over time. The process for identifying distinct 
concepts is similar to that of in proximity dendogram 
cutting [8] that identifies clusters according to 
dissimilarity levels. 

The density threshold for identification of concept 
class is empirically determined using a validation set. 
First, a concept hierarchy is incrementally built from a 
stream of data in the validation set. Because the class 
of each instance is known in the validation set, distinct 
concepts that correspond to classes in the validation 
set can be accurately identified from the concept 
hierarchy. The threshold is then calculated from the 
densities of these distinct concepts. More specifically, 
let H be the concept hierarchy generated from the 
validation set containing a set of concept classes T. Let 
ct∈H be a concept that corresponds to concept class 
t∈T. Furthermore, let ε(c) be a set of instances covered 
by concept c. The concept ct is identified from H by:  

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑ ∑∑
−∈ ∈∈∈ }{ )(
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,maxarg
tTu cx

ux
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t mmc
εεH
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where mx,t is a binary matching function such that mx,t 
=1 if  the class of instance x is t, or 0 otherwise. Hence, 
ct maximizes the difference between the numbers of 
instances that are on t class and non-t classes.   

For example, let T={ t1, t2} be the set of classes in 
the validation set where ε(t1) = {x1, x2, x3}  and ε(t2) = 
{x4, x5, x6}.  Let {c1, c2, c2} ⊂ H be a set of non-root 
concepts, which is a subset of a concept hierarchy H 
generated from the same instances in the validation 
set. Suppose ε(c1) = {x1, x2}, ε(c2) = {x3, x4} and ε(c3) 
= {x5, x6}.  To find the corresponding concept class t1, 
one can use Equation (2) to calculate the difference 
between the numbers of instances that are on t1 and on 
t2  for instances of c1, c2 and c3, and then select the one 
that maximizes this difference.   These differences are 
(2 – 1)=1 for c1, (1 – 1)=0 for c2, and (0 – 2)= –2 for 
c3. Hence, c1 is the corresponding concept for class t1 
because c1 has the maximum difference. Applying the 
same procedure, one will find that c3 is the 
corresponding concept for class t2. 
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Now, let µ(ct) be the average distance to the 
nearest neighbor among ct’s child nodes; µ represents 
the concept density in the concept formation system 
employed. A higher µ value corresponds to a lower-
density concept, and vice versa. Thus, the µ values 
tend to increase along the paths from leaf nodes to the 
root. Several alternatives can be used to determine the 
threshold value, among of these are θmin and θmax as 
defined below:  

∑
∈

=
Tt

tc
T

)(µ1
minθ   (3) 

∑
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⎬
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⎩
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The threshold value of θmin is calculated by 
averaging the density values of corresponding 
concepts found in the concept hierarchy. The 
threshold value of θmax is averaged over either the 
density value of the corresponding concept or the 
average density among the corresponding concept and 
its parent, whoever gives the maximum value. The 
threshold θmin poses the risk of overfitting the concept 
class while θmax could underestimate the concept 
density. To avoid both of these potential problems, 
this paper applies thresholding stochastically for any 
density value between θmin and θmax.  

Let x=c0 be an instance (e.g. a leaf node in the 
concept hierarchy) and Ax = {c0, c1, …, cn} such that cj 
is cj-1‘s parent and cn is the root. Define ϕ: X × C → {1, 
0} to be a binary function such that:  
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Thus, the function ϕ(x, cj) returns 1 if the densities 

of all concepts in the path from the leaf node x to its 
ancestor cj are within the threshold (i.e., less than or 
equal to θmin). If the concept density is between θmin 
and θmax, then it will be considered as within the 
threshold with a probability as defined in Equation (5). 
A concept c is said to be compact if only if ϕ(x, c) = 1 
for every x∈ε(c). A distinct concept representing the 
classes of all instances that are its descendants in the 
concept hierarchy can be identified from a compact 
concept whose parent is not compact. Similarly, the 
concept class of an instance x or δ(x) can be identified 
from its ancestor that is a distinct concept. 

EXPERIMENTS 

This section describes a set of experiments that 
evaluate the concept tracker algorithm on information-
filtering domains. The performances of existing 
concept learners that learn a sequence of partial 
labeled instances will be used as the baseline. The 
effectiveness of the concept tracker algorithm can then 
be observed from the performance gains achieved, 
over the baseline performances, from applying the 
same learner but using the data set produced by the 
proposed algorithm. In addition, the experiments also 
investigate the effects of various biases employed by 
the concept learners. 
 
Table 1.  Summary of topics and documents for 

evaluation. 
Topics 

(Concept Classes) 
Training 

Set 
Validation 

Set 
Test 
Set 

Trade, Coffee, Crude, Sugar, 
Acq 400* 100** 100** 

Others (54 topics) − − 427 
At *80 and **20 documents per topic category. 
 
Data Set 

A subset of the Reuters-21578 1.0 collection was 
used in all experiments. The documents were pre-
processed by removing stop words, stemming the 
remaining words and extracting them as individual 
terms. The document terms were weighed using the 
TF-IDF method [12]. Table 1 summarizes the topics 
and documents selected for the evaluation. The 
document topics represent concept classes. The 
validation set, as described in Section Identification of 
Instance classes was used to empirically determine the 
density threshold. 
 
 

 
Figure 3.  Experiment procedure for evaluating 

concept tracker algorithm 

Given: a data stream S generated from the training set.
Initialization: 
    IS = 〈∅〉, i.e. the sequence of labeled instances.    
    H = ∅, the concept hierarchy. 
    Determine the density threshold from the validation 
set. 
For each tracking cycle i = {1 … K} 
1. Process incrementally the ith m-instance sequence 
from S. 
    For each instance x from the m-instance sequence 
         Update H incrementally to incorporate x. 
         If the label q of x is available,  
                 Concatenate 〈(x, q)〉 to the end of IS. 
2. Identify distinct concepts in H. 
3. Execute the Concept Tracker algorithm to generate 

RC and RI sets from current values of IS and H.  
4. Run a selected classifier (concept learner) to learn the  

stream generated from instances in RI and measure 
the  accuracy of the learned concepts on the test set. 
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Procedure and Tracking Tasks  

Figure 3 summarizes the experiment procedure, 
which is slightly modified from the one described in 
Section Preliminary Observations. The procedure 
accommodates both the incremental and batch 
processes needed in the proposed framework.  The 
same test set was used to measure the system’s 
performance on each tracking cycle and is calculated 
as follows. All instances in the test data were ranked 
based on their similarities to learned concepts.  The 
system’s accuracy was then measured by calculating 
the percentage of target test instances ranked within 
the top n data. Specifically, let P be the number of 
target instances that appear in the top n data ranked by 
a system. The accuracy of the system was calculated 
by the equation below: 

A c c u ra c y 1 0 0 %
i

i

P
T

= ×
∑

                       (6) 

where Ti were the numbers of target instances being 
considered in the current tracking cycle and n = ∑i Ti 
was the total number of target instances in the test 
data.  

The data streams were generated according to a 
tracking task, a scenario that described the evolution 
of target concepts over time. Tables 2 and 3 provide 
two tracking tasks used in the experiments. Each 
column in the tables describes the number and the 
class of instances in the m-instance sequence that is 
processed at each tracking cycle. In Table 2, for 
example, tracking cycles 21−40 processed two-
instance sequences; each contains one TRADE instance 
and one COFFEE instance ordered randomly in the 
sequence. Each tracking cycle used a new set of 
instances from the training set that had not been seen. 
Information regarding the instance classes was not 
told to the system. 
 
Table 2. The first tracking task: learning the evolution 

of a single target concept. Note that 
TR=TRADE, CO=COFFEE, CR=CRUDE, 
SU=SUGAR and AC = ACQ as described in 
Table 1. 

Tracking Cycle  
1 − 20 21 − 40 41 − 60 61 − 80 81 − 100 
(TR, +)  (TR, −) (CO, +) (CO, −) (CR, +) (CR, −) (SU, +) (SU, −) (AC, +)
(m=1) (m=2) (m=2) (m=2) (m=2) 

 
Table 3. The second tracking task: learning the 

evolution of multiple target concepts. 
Tracking Cycle  

1 − 20 21 − 40 41 − 60 
(Trade, +) (Coffee, +) 
(CRUDE, +) 

(Trade, −) (Coffee, +) 
(CRUDE, +) (SUGAR, +) 

(Coffee, −) (Crude, +) 
(SUGAR, +) (ACQ, +) 

(m=3) (m=4) (m=4) 

Table 4. The sequence of partial labeled instances. 
Amount of Labeled 

Data 
Tracking Cycles 

5 Percent 1, 21, 41, … 
10 Percent 1, 11, 21, 31, 41, … 
25 Percent 1, 6, 11, 16, 21, 26, 31, 36, 41, … 
 

For simplicity, target concepts were made stable 
for periods of twenty tracking cycles. Labeled 
instances that marked the beginning of change in 
target concepts were given at the first tracking cycles 
during the twenty-tracking cycle periods, i.e. at 
tracking cycles 1, 21, 41 and so on. Concept classes 
with positive (+) labels indicated the desired target 
concepts at the respective tracking cycles. Positive 
labeled instances were used to establish new (or 
emphasize the existing) target concepts.  The negative 
labels were used to negate previously established 
target concepts. For example, a positive TRADE 
instance in Table 2 was given during the first tracking 
cycle to establish the TRADE target concept. The 
labeled instances provided during the 21st tracking 
cycle contained one positive COFFEE instance and one 
negative TRADE instance, which changed the target 
concept from TRADE to COFFEE. 

The experiments were varied using data streams 
containing 5, 10 and 25 percents of labeled instance 
sets. Table 4 describes the tracking cycles at which the 
labeled instance sets were provided in each stream. 
Since the results depended on the order of instances in 
the stream, the accuracy at each tracking cycle was 
averaged over ten runs. Each run used a different 
stream of instance sets but it represented the same 
tracking task. 
 
Varying the Concept Learner 

The experiments were also conducted by varying 
the concept learner (or classifier) that learned the data 
set RI generated by the concept tracker algorithm. In 
particular, we considered three classifiers from 
information retrieval techniques. The first classifier 
was the incremental version of the Rocchio’s 
relevance feedback algorithm [11]. The classifier 
learned concept classes in a single-descriptor 
representation. A descriptor d is a list of feature and its 
weight pairs. For each labeled instance d in the stream, 
it incrementally updated its descriptor as follows: 

ddd RocchiooldRocchionew ⋅+= α   (7) 

where α = 0.1 for a positive labeled instance and α = 
−0.9 for a negative labeled instance. In previous work 
[16] these settings were optimal for learning changing 
concepts in the domain.  

The second classifier was multiple ROCCHIO 
algorithm, or M-ROCCHIO for short. It maintained 
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multiple descriptors; each was updated using the same 
incremental ROCCHIO algorithm as above. The M-
ROCCHIO classifier also utilized the concept classes 
RC identified by the concept tracker algorithm. 
Accordingly, each descriptor was used to learn only 
instances of the same concept class.  

The third classifier was MTDR (Multiple Three-
Descriptor Representation) algorithm [16]. This 
classifier was similar to M-ROCCHIO in that multiple 
concept classes were represented in multiple 
descriptors. Unlike M-ROCCHIO, the MTDR classifier 
used its own built-in algorithm for identifying the 
concept classes.  

The ROCCHIO and MTDR classifiers learned a 
single stream. The M-ROCCHIO algorithm learned 
multiple streams; each stream was learned by a 
separate descriptor and contained instances of the 
same class with respect to concept classes RC. All 
streams were generated from the instance set RI and 
were ordered based on the instance arrival times. 

The three classifiers performed a ranking based 
classification on a given test set. The score of a new 
instance was calculated according to the cosine 
similarity metric [12] with respect to the learned 
concepts. For those with multiple descriptor 
representations (e.g. M-ROCHHIO and MTDR), the 
score was based on the highest similarity akin to the 
nearest neighbor classification.  
 
Results 

Figures 4 and 5 show the performance over time 
from learning data streams that contain five percent of 
labeled instances on the second tracking task. The 
PLD+UNLABELED-DATA results were obtained by 
running the classifiers using the instance sets 
generated by the concept tracker algorithm. In the 
absence of labeled data, as shown by the figures, the 
performances improve as expected as more relevant 
unlabeled data become available from the streams. 
 

 
Figure 4.  Rocchio’s accuracies on the 2nd tracking 

task. 

 
Figure 5. MTDR’s accuracies on the 2nd  tracking 

task. 
 
 

 
Figure 6.  Performance comparison on the 1st 

tracking task. 
 
 

 
 
Figure 7.  Performance comparison on the 2nd 

tracking task. 
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Using the same data sets provided by the concept 
tracker algorithm, the system’s performances could be 
significantly affected by the classifier employed. 
Figure 6 depicts the performance comparison among 
the three classifiers on the first tracking task, i.e. 
tracking the evolution of single target concept. All 
classifiers have the capability for learning at least a 
single target concept so that their performances are 
expected to be comparable to one another on this task. 
This expectation, as indicated by Figure 6, is satisfied 
in the case of the ROCCHIO and MTDR performances. 
The M-ROCCHIO performances are slightly worse 
than the others. 

Figure 7 shows the system’s performances on the 
second tracking task, i.e. tracking the evolution of 
three target concepts. In contrast to the first tracking 
task, the M-ROCCHIO classifier performs better than 
the other two classifiers. The observation that the 
ROCCHIO performances are relatively much worse is 
not surprising because this classifier lacks the 
representational power needed for learning multiple 
target concepts.  

Table 5 and Table 6 summarize the experiment 
results obtained by averaging the system accuracies 
from the beginning of tracking cycle to the end. The 
tables reveal that incorporating unlabeled data always 
improves the average accuracies with respect to the 
baseline performances. Increasing the portion of 
labeled data in the stream does not seem to result in a 

full recovery of performance as achieved from 
learning with complete (100 PERCENT) labeled data. 
However, the fact that highest performance gains are 
obtained from learning with the least amount of 
labeled data is very encouraging because this is the 
case that is being addressed by the paper. 

Further observations reveal that the data sets 
generated by the concept tracker algorithm contain 
19% noise in the first tracking task and 5% in the 
second tracking task on the averages. These explain 
why M-ROCCHIO performs worst in the first task but it 
performs best in the second task. The M-ROCCHIO 
algorithm utilizes the concept classes identified by the 
concept tracker algorithm verbatim so that the quality 
of data set generated by the concept tracker algorithm 
directly affects the M-ROCCHIO performance. On the 
other hand, the MTDR classifier independently learns 
the class of each instance that makes this classifier less 
susceptible to noise. 
 
RELATED WORKS 

STAGGER was the first incremental learning 
system that dealt with concept drift problem by 
thresholding concept weights [13]. Widmer and Kubat 
developed a family of FLORA learning algorithms 
[14]. The system employed an adaptive window 
adjustment heuristic for flexibly responding to concept 
drift, reused previously learned stable concepts and 

Table 5. The summary of experiment results on the first tracking task.  The numbers following the “+”s 
within parentheses denote the performance gains achieved by incorporating unlabeled data over 
the baseline performances on the same amount of labeled data observed and the same classifier 
employed.  

Average Accuracy (%) 
MTDR Rocchio 

Amount of 
Labeled Data 

Labeled Data 
(Baseline) 

Labeled + 
Unlabeled Data 

Labeled Data 
(Baseline) 

Labeled + 
Unlabeled Data 

M-Rocchio 
Labeled + 

Unlabeled Data
5 Percent 63.00 78.91 (+25.3%) 46.90 77.66 (+65.6%) 74.59 
10 Percent 74.10 81.01 (+9.3%) 60.75 82.13 (+35.2%) 79.24 
25 Percent 79.07 82.14 (+3.9%) 70.52 82.00 (+16.3%) 78.54 

100  Percent 86.96 − 79.82 − − 
 
Table 6. The summary of experiment results on the second tracking task.   

Average Accuracy (%) 
MTDR Rocchio M-Rocchio 

Amount of 
Labeled Data 

Labeled Data 
(Baseline) 

Labeled + Unlabeled 
Data 

Labeled Data 
(Baseline) 

Labeled + 
Unlabeled Data 

Labeled + 
Unlabeled Data

5 Percent 71.13 78.50 (+10.4%) 61.63 68.11 (+10.5%) 81.26 
10 Percent 75.61 80.93 (+7.0%) 68.06 69.85 (+2.6%) 83.44 
25 Percent 77.72 80.87 (+4.1%) 69.07 71.56 (+3.6%) 81.89 
100 Percent 86.07 − 75.14 − − 
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handled the presence of noise. In more recent work, 
Widmer exploited contextual attributes on a fixed 
window size for tracking context changes through 
meta-learning [15]. SPLICE was perhaps the first 
concept drift system that employed an off-line 
approach, e.g. using Quinlan’s C4.5, for identifying 
hidden contexts [6]. Tracking the evolution of user 
interests is an instance problem of concept drift 
learning in information-filtering domains. Klinken-
berg and Joachims also employed an adaptive 
window adjustment heuristic for learning changing 
user interests but used support vector machine (SVM) 
as the underlying classifier [10]. Their method worked 
on an input stream that arrived in batches. Learning 
the dynamics of user preference had also been 
developed using three-descriptor representations [16]. 
The algorithm employed an implicit windowing 
technique (i.e. by decaying older examples), which 
combined large and small windows. 
 
CONCLUSIONS 

This paper has described the computational 
framework for incorporating unlabeled data in concept 
drift learning and has presented its evaluation on 
information-filtering domains. In the absence of 
labeled data, the system improves its performance 
over time as relevant unlabeled data become available. 
The framework offers a flexible architecture that 
allows the classifier to be tailored to target applica-
tions.  Although the soundness of the concept tracker 
algorithm is obvious, its effectiveness depends on the 
method for identifying instance classes, the concept 
formation system used for building the concept 
hierarchy, and the classifier employed for concept 
learning. This leaves a lot of room for improvement.  
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