
Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://www.petra.ac.id/~puslit/journals/dir.php?DepartmentID=INF

EXPLOITING UNLABELED DATA IN CONCEPT DRIFT LEARNING

Dwi Hendratmo Widyantoro
School of Electrical Engineering and Informatics

Bandung Institute of Technology
Email: dwi@if.itb.ac.id

ABSTRACT: Learning unlabeled data in a drifting environment still receives little attention. This paper
presents a concept tracker algorithm for learning concept drift that exploits unlabeled data. In the absence of
complete labeled data, instance classes are identified using a concept hierarchy that is incrementally
constructed from data stream (mostly unlabeled data) in unsupervised mode. The persistence assumption in
temporal reasoning is then applied to infer target concepts. Empirical evaluation that has been conducted on
information-filtering domains demonstrates the effectiveness of this approach.

Keywords: concept drift learning, unlabeled data, persistence assumption.

INTRODUCTION

Combining labeled and unlabeled data in concept

learning has gained its popularity since the past few
years. With the proliferation of information on the
Internet, unlabeled data become more widely
available but acquiring labeled data still poses a
bottleneck [9]. As such, unlabeled data can provide
information that fills the gap in the labeled data.

There are several existing algorithms for learning
unlabeled data. Expectation Maximization (EM)
algorithm [4], for example, works by iteratively
revising a hypothesis that maximizes its likelihood.
Co-training is a more recent method that exploits sets
of distinct features in unlabeled data set [2]. Blum and
Chawla develop an algorithm based on finding the
minimum cuts in graph for combining labeled and
unlabeled data [3]. Although the effectiveness of these
methods is not questionable, these methods mainly
assume the stability of learned concepts. Therefore,
this assumption is not suitable for inducing target
concepts that change over time such as in concept drift
learning.

A number of practical algorithms for learning
concept drift [10][13][14][15][16] as well as its
theoretical characterizations [1][7] have been
developed in the past. The existing concept drift
learning algorithm, however, do not incorporate
unlabeled data and assume the availability of
numerous labeled data in order to achieve
performance at satisfactory levels. The assumption is
certainly not realistic in real world application. This
paper proposes a concept tracker algorithm that
utilizes unlabeled data for learning concept drift in the
presence of incomplete labeled data.

PRELIMINARY OBSERVATIONS

This section presents empirical and theoretical
observations that motivate the approach described in

this paper. Prior to discussing preliminary experiment
results, it will briefly describe the experiment setup for
obtaining the empirical finding.

Following the standard in concept drift learning,
the goal of experiments was to observe the perfor-
mance of system as target concepts change over time.
Accordingly, the system was presented with a stream
of data to learn sequentially, and its performances
were measured on a fixed test set with respect to
current target concepts at regular intervals after
processing m consecutive instances. A period of
incremental learning on the m-instance sequence and
system’s performance measurement was then called a
tracking cycle. The target concepts were made stable
for twenty tracking cycles before changed to a
different target concept set. Section experiments
provides further experiment details.

Figure 1 depicts the system’s performances over
time from learning with completely and partially
labeled data stream. The FULL-LABELED-DATA in the
figure denotes a system that receives a new sequence
of four labeled instances at each tracking cycle.
Labeled data sets are given to the PARTIAL-LABELED-
DATA system only when target concepts are about to
change (i.e. at tracking cycles 1, 21 and 41),
amounting to five percent as many labeled data as
learned by the FULL-LABELED-DATA system.

The performances over time given by the FULL-
LABELED-DATA system, as shown by Figure 1, are
typical in concept drift learning. The system’s
accuracy drops when a concept drift occurs and then
recovers over the next tracking cycles as the system
receives more labeled data for learning new target
concepts. In contrast, the PARTIAL-LABELED-DATA
system has no way of improving its performances in
the absence of labeled data. It also suffers from being
unable to accurately learn the new target concepts
from learning with partially labeled data. Due to

54

Widyantoro, Exploiting Unlabeled Data In Concept Drift Learning

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://www.petra.ac.id/~puslit/journals/dir.php?DepartmentID=INF

55

applying the same test set, its performances are
constant at low accuracies and tracking cycles during
which the target concepts are stable.

Figure 1. System’s performance over time on fullly

and partially labeled data sets

The above empirical observations are also well
justified by existing theoretical finding. In concept
drift learning, the drift rate ∆ is an essential parameter
and denotes the probability that two successive target
concepts disagree on a randomly drawn example [7],
e.g. Prob(f(xm)≠f(xm+1)). Hence, a slower drift rate
corresponds to learning from a data stream whose
target concepts change less frequently, and vice versa.
Helmbold and Long provide theoretical bounds on
the allowable drift rates that guarantee tractability with
an error of at most ε as follows:

)/1ln(

2

ε
ε

d
c

≤∆ (1)

where c > 0, and d is the Vapnik-Chervonenkis
dimension of a concept/hypothesis. Because c and d
values are constants, the bounds imply that the
tracking problem is more difficult (i.e. producing
higher error rates) on learning with fewer labeled
instances per target concept (i.e. higher drift rates).

A NOVEL APPROACH

Reducing the rate of drift according to Equation

(1) is apparently the only option for improving the
performance of a concept drift learner. One of possible
strategies for reducing the drift rate as considered in
this paper is to fill the gap in labeled data with relevant
unlabeled data. The following describes an algorithm
that infers the current label of each labeled instance,
based on the instance classes, and expands it with
relevant unlabeled data.

Concept Tracker Algorithm

Let's now assume that the associations between
an instance and its concept class somehow can be
identified. Let X be the instance spaces and C be the
concept class spaces. The following defines two
functions needed to access the instance-class
associations:
• δ: X → C is a function that, given an instance,

returns the instance class.
• ε: C → P(X) is a concept instantiation function that

returns a set of instances covered by a concept
class.

Let Q = {+,−} be a set of labels and let IS =
〈(x1,q1), …, (xn,qn)〉 for each xi∈X and qi∈ Q denote a
sequence of n labeled instances (e.g., data stream)
where an instance on the left side arrives earlier. In
Information Filtering domain, for example, an
instance xi is a text document (or a Web page), and a
label (or feedback) is given to the document whether it
is relevant (“+”) or irrelevant (“−”). Figure 2 describes
a Concept Tracker algorithm that takes IS as input and
outputs a set of labeled concept classes RC and a set
of expanded labeled instances RI.

Figure 2. Concept Tracker Algorithm (see the
description of algorithm in text).

The foundation for reasoning the label of each

concept class in Step 2 is that of persistence
assumption, which states that once a fact becomes true
it remains true thenceforth until the fact is negated [5].
The persistence assumption enables reasoning the
label of each concept class at any given time. Since
the concept drift learning typically refers to current

Input: IS=〈(x1,q1), …, (xn,qn)〉 a sequence of labeled
instances where qi is the label of instance xi.
Output: RC, a set of labeled concept classes.
 RI, a set of expanded labeled instances.
Step 1. Generate a stream of labeled concept classes by

replacing each instance in IS with its
corresponding concept.

 Let CS = 〈(c1,q1), …, (cn,qn)〉 such that ci = δ (xi)
for each (xi,qi) ∈ IS and ci∈C.
Step 2. Infer the label of each distinct concept class.

 Let RC = {(,)}
ii i cc q ∈C where C is a set of

distinct concepts occurring in the stream CS
and qi is the label assigned to the most
recent ci in CS.

Step 3. Instantiate each distinct concept class in RC by
replacing the concept class with all instances
it covers.

 Let RCqciCXj iiij
qxRI ∈∈=),()()},}{({ ε

JURNAL INFORMATIKA VOL. 8, NO. 1, MEI 2007: 54 - 62

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://www.petra.ac.id/~puslit/journals/dir.php?DepartmentID=INF

56

target concepts, the class labels can be simply inferred
from the most recent labels assigned to concept
classes. The following presents the illustrating
example for the concept tracker algorithm.

Suppose IS = 〈(x1,+), (x2,+), (x3,−), (x4,−), (x5,−),
(x6,−), (x7,+), (x8,+)〉 (the input of the concept tracker
algorithm) is the original data stream (e.g., a set of
relevance feedback documents). Let {x1, x3, x8, x12,
x13} be a set of instances belong to class c1 such that
δ(x1)=δ(x3)=δ(x8)=δ(x12)=δ(x13)=c1 and ε(c1)={x1, x3,
x8, x12, x13}. Similarly, let {x2, x6, x9, x11} and {x4, x5,
x7, x10, x14} be the sets of classes belong to c2 and c3
respectively. Classes c1, c2, c3 can represent document
topic categories in Information Filtering domain. The
stream of labeled classes generated by Step 1 in Figure
2 is thus CS = 〈(c1,+), (c2,+), (c1, −), (c3,−), (c3,−), (c2,
−), (c3,+), (c1,+)〉. Step 2 will generate distinct
concepts RC={(c1,+), (c2, −), (c3,+)} based on the
most recent labels assigned to concept classes (i.e.,
“+” is the most recent label assigned to classes c1 and
c3). Finally, all distinct classes in Step 3 are
instantiated to produce more complete sets of labeled
instances RI={({x1, x3, x8, x12, x13},+), ({x2, x6, x9, x11},
−), ({x4, x5, x7, x10, x14},+)}.

Any concept learner suitable for a domain can
then be applied to learn the instance set RI. The
learner can also take advantage the identified concept
classes RC if necessary. When the input IS changes,
the outputs must be entirely re-generated and re-
learned. Despite the simplicity of the Concept Tracker
algorithm, its effectiveness depends largely on the
reliability of the δ function for identifying the instance
classes. The next section provides the detail of the
approach in handling unlabeled data in order to realize
δ and ε functions.

Identification of Instance Classes

This paper uses a concept hierarchy for
establishing the association between an instance and
its concept class. The concept hierarchy is
incrementally built from labeled and unlabeled data
observed from the stream in unsupervised mode.
Thus, during the course of learning it grows
dynamically as it sees more instances. The cluster
hierarchy is basically a tree structure with the
following characteristics: (1) all leaf nodes represent
instances and (2) all internal nodes represent concepts
that generalize those of their descendants. Given a
concept c, which is an internal node in the concept
hierarchy, ε(c) returns a set of leaf nodes that are
descendant of node c. Distinct concepts emerge from
concepts in the hierarchy that distinctively partition
instances. Obviously, these distinct concepts are the

most appropriate concepts for representing the classes
of all instances underneath.

A recently developed concept formation system is
employed for constructing the concept hierarchy
needed [17][18]. One of the concept properties
generated by the system is concept density, which is
calculated from the average distance to the nearest
neighbor among the child concepts. The concept
density in the hierarchy tends to decrease along the
path to the root. At any time, a set of distinct, non-
overlapping concepts can be identified from the
concept hierarchy by thresholding the concept density
information. The distinct concepts identified,
however, could change as the concept hierarchy is
updated over time. The process for identifying distinct
concepts is similar to that of in proximity dendogram
cutting [8] that identifies clusters according to
dissimilarity levels.

The density threshold for identification of concept
class is empirically determined using a validation set.
First, a concept hierarchy is incrementally built from a
stream of data in the validation set. Because the class
of each instance is known in the validation set, distinct
concepts that correspond to classes in the validation
set can be accurately identified from the concept
hierarchy. The threshold is then calculated from the
densities of these distinct concepts. More specifically,
let H be the concept hierarchy generated from the
validation set containing a set of concept classes T. Let
ct∈H be a concept that corresponds to concept class
t∈T. Furthermore, let ε(c) be a set of instances covered
by concept c. The concept ct is identified from H by:

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑ ∑∑
−∈ ∈∈∈ }{)(

,
)(

,maxarg
tTu cx

ux
cx

tx
c

t mmc
εεH

 (2)

where mx,t is a binary matching function such that mx,t
=1 if the class of instance x is t, or 0 otherwise. Hence,
ct maximizes the difference between the numbers of
instances that are on t class and non-t classes.

For example, let T={ t1, t2} be the set of classes in
the validation set where ε(t1) = {x1, x2, x3} and ε(t2) =
{x4, x5, x6}. Let {c1, c2, c2} ⊂ H be a set of non-root
concepts, which is a subset of a concept hierarchy H
generated from the same instances in the validation
set. Suppose ε(c1) = {x1, x2}, ε(c2) = {x3, x4} and ε(c3)
= {x5, x6}. To find the corresponding concept class t1,
one can use Equation (2) to calculate the difference
between the numbers of instances that are on t1 and on
t2 for instances of c1, c2 and c3, and then select the one
that maximizes this difference. These differences are
(2 – 1)=1 for c1, (1 – 1)=0 for c2, and (0 – 2)= –2 for
c3. Hence, c1 is the corresponding concept for class t1
because c1 has the maximum difference. Applying the
same procedure, one will find that c3 is the
corresponding concept for class t2.

Widyantoro, Exploiting Unlabeled Data In Concept Drift Learning

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://www.petra.ac.id/~puslit/journals/dir.php?DepartmentID=INF

57

Now, let µ(ct) be the average distance to the
nearest neighbor among ct’s child nodes; µ represents
the concept density in the concept formation system
employed. A higher µ value corresponds to a lower-
density concept, and vice versa. Thus, the µ values
tend to increase along the paths from leaf nodes to the
root. Several alternatives can be used to determine the
threshold value, among of these are θmin and θmax as
defined below:

∑
∈

=
Tt

tc
T

)(µ1
minθ (3)

∑
∈ ⎭

⎬
⎫

⎩
⎨
⎧ +

=
Tt

tt
t

scc
c

T 2
)parent'(µ)(µ

),(µmax1
maxθ (4)

The threshold value of θmin is calculated by
averaging the density values of corresponding
concepts found in the concept hierarchy. The
threshold value of θmax is averaged over either the
density value of the corresponding concept or the
average density among the corresponding concept and
its parent, whoever gives the maximum value. The
threshold θmin poses the risk of overfitting the concept
class while θmax could underestimate the concept
density. To avoid both of these potential problems,
this paper applies thresholding stochastically for any
density value between θmin and θmax.

Let x=c0 be an instance (e.g. a leaf node in the
concept hierarchy) and Ax = {c0, c1, …, cn} such that cj
is cj-1‘s parent and cn is the root. Define ϕ: X × C → {1,
0} to be a binary function such that:

⎩
⎨
⎧ ≥≥∈∀=

=
otherwise

andforiff
0

01)(1
),(

ijAcc
cx xii

j

ψ
ϕ (5)

where

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥
<<

−
−

==

≤

=

max

maxmin

minmax

max

min

)(0
)(

)(
)1)(1

)(

)(

θ
θθ

θθ
θ

ψ

θ

ψ

i

i

i
i

i

i

c
c

c
c

c

c

µfor
 µfor

µ
Prob(with

µ for 1

Thus, the function ϕ(x, cj) returns 1 if the densities

of all concepts in the path from the leaf node x to its
ancestor cj are within the threshold (i.e., less than or
equal to θmin). If the concept density is between θmin
and θmax, then it will be considered as within the
threshold with a probability as defined in Equation (5).
A concept c is said to be compact if only if ϕ(x, c) = 1
for every x∈ε(c). A distinct concept representing the
classes of all instances that are its descendants in the
concept hierarchy can be identified from a compact
concept whose parent is not compact. Similarly, the
concept class of an instance x or δ(x) can be identified
from its ancestor that is a distinct concept.

EXPERIMENTS

This section describes a set of experiments that
evaluate the concept tracker algorithm on information-
filtering domains. The performances of existing
concept learners that learn a sequence of partial
labeled instances will be used as the baseline. The
effectiveness of the concept tracker algorithm can then
be observed from the performance gains achieved,
over the baseline performances, from applying the
same learner but using the data set produced by the
proposed algorithm. In addition, the experiments also
investigate the effects of various biases employed by
the concept learners.

Table 1. Summary of topics and documents for

evaluation.
Topics

(Concept Classes)
Training

Set
Validation

Set
Test
Set

Trade, Coffee, Crude, Sugar,
Acq 400* 100** 100**

Others (54 topics) − − 427
At *80 and **20 documents per topic category.

Data Set

A subset of the Reuters-21578 1.0 collection was
used in all experiments. The documents were pre-
processed by removing stop words, stemming the
remaining words and extracting them as individual
terms. The document terms were weighed using the
TF-IDF method [12]. Table 1 summarizes the topics
and documents selected for the evaluation. The
document topics represent concept classes. The
validation set, as described in Section Identification of
Instance classes was used to empirically determine the
density threshold.

Figure 3. Experiment procedure for evaluating

concept tracker algorithm

Given: a data stream S generated from the training set.
Initialization:
 IS = 〈∅〉, i.e. the sequence of labeled instances.
 H = ∅, the concept hierarchy.
 Determine the density threshold from the validation
set.
For each tracking cycle i = {1 … K}
1. Process incrementally the ith m-instance sequence
from S.
 For each instance x from the m-instance sequence
 Update H incrementally to incorporate x.
 If the label q of x is available,
 Concatenate 〈(x, q)〉 to the end of IS.
2. Identify distinct concepts in H.
3. Execute the Concept Tracker algorithm to generate

RC and RI sets from current values of IS and H.
4. Run a selected classifier (concept learner) to learn the

stream generated from instances in RI and measure
the accuracy of the learned concepts on the test set.

JURNAL INFORMATIKA VOL. 8, NO. 1, MEI 2007: 54 - 62

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://www.petra.ac.id/~puslit/journals/dir.php?DepartmentID=INF

58

Procedure and Tracking Tasks

Figure 3 summarizes the experiment procedure,
which is slightly modified from the one described in
Section Preliminary Observations. The procedure
accommodates both the incremental and batch
processes needed in the proposed framework. The
same test set was used to measure the system’s
performance on each tracking cycle and is calculated
as follows. All instances in the test data were ranked
based on their similarities to learned concepts. The
system’s accuracy was then measured by calculating
the percentage of target test instances ranked within
the top n data. Specifically, let P be the number of
target instances that appear in the top n data ranked by
a system. The accuracy of the system was calculated
by the equation below:

A c c u ra c y 1 0 0 %
i

i

P
T

= ×
∑

 (6)

where Ti were the numbers of target instances being
considered in the current tracking cycle and n = ∑i Ti
was the total number of target instances in the test
data.

The data streams were generated according to a
tracking task, a scenario that described the evolution
of target concepts over time. Tables 2 and 3 provide
two tracking tasks used in the experiments. Each
column in the tables describes the number and the
class of instances in the m-instance sequence that is
processed at each tracking cycle. In Table 2, for
example, tracking cycles 21−40 processed two-
instance sequences; each contains one TRADE instance
and one COFFEE instance ordered randomly in the
sequence. Each tracking cycle used a new set of
instances from the training set that had not been seen.
Information regarding the instance classes was not
told to the system.

Table 2. The first tracking task: learning the evolution

of a single target concept. Note that
TR=TRADE, CO=COFFEE, CR=CRUDE,
SU=SUGAR and AC = ACQ as described in
Table 1.

Tracking Cycle
1 − 20 21 − 40 41 − 60 61 − 80 81 − 100
(TR, +) (TR, −) (CO, +) (CO, −) (CR, +) (CR, −) (SU, +) (SU, −) (AC, +)
(m=1) (m=2) (m=2) (m=2) (m=2)

Table 3. The second tracking task: learning the

evolution of multiple target concepts.
Tracking Cycle

1 − 20 21 − 40 41 − 60
(Trade, +) (Coffee, +)
(CRUDE, +)

(Trade, −) (Coffee, +)
(CRUDE, +) (SUGAR, +)

(Coffee, −) (Crude, +)
(SUGAR, +) (ACQ, +)

(m=3) (m=4) (m=4)

Table 4. The sequence of partial labeled instances.
Amount of Labeled

Data
Tracking Cycles

5 Percent 1, 21, 41, …
10 Percent 1, 11, 21, 31, 41, …
25 Percent 1, 6, 11, 16, 21, 26, 31, 36, 41, …

For simplicity, target concepts were made stable
for periods of twenty tracking cycles. Labeled
instances that marked the beginning of change in
target concepts were given at the first tracking cycles
during the twenty-tracking cycle periods, i.e. at
tracking cycles 1, 21, 41 and so on. Concept classes
with positive (+) labels indicated the desired target
concepts at the respective tracking cycles. Positive
labeled instances were used to establish new (or
emphasize the existing) target concepts. The negative
labels were used to negate previously established
target concepts. For example, a positive TRADE
instance in Table 2 was given during the first tracking
cycle to establish the TRADE target concept. The
labeled instances provided during the 21st tracking
cycle contained one positive COFFEE instance and one
negative TRADE instance, which changed the target
concept from TRADE to COFFEE.

The experiments were varied using data streams
containing 5, 10 and 25 percents of labeled instance
sets. Table 4 describes the tracking cycles at which the
labeled instance sets were provided in each stream.
Since the results depended on the order of instances in
the stream, the accuracy at each tracking cycle was
averaged over ten runs. Each run used a different
stream of instance sets but it represented the same
tracking task.

Varying the Concept Learner

The experiments were also conducted by varying
the concept learner (or classifier) that learned the data
set RI generated by the concept tracker algorithm. In
particular, we considered three classifiers from
information retrieval techniques. The first classifier
was the incremental version of the Rocchio’s
relevance feedback algorithm [11]. The classifier
learned concept classes in a single-descriptor
representation. A descriptor d is a list of feature and its
weight pairs. For each labeled instance d in the stream,
it incrementally updated its descriptor as follows:

ddd RocchiooldRocchionew ⋅+= α (7)

where α = 0.1 for a positive labeled instance and α =
−0.9 for a negative labeled instance. In previous work
[16] these settings were optimal for learning changing
concepts in the domain.

The second classifier was multiple ROCCHIO
algorithm, or M-ROCCHIO for short. It maintained

Widyantoro, Exploiting Unlabeled Data In Concept Drift Learning

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://www.petra.ac.id/~puslit/journals/dir.php?DepartmentID=INF

59

multiple descriptors; each was updated using the same
incremental ROCCHIO algorithm as above. The M-
ROCCHIO classifier also utilized the concept classes
RC identified by the concept tracker algorithm.
Accordingly, each descriptor was used to learn only
instances of the same concept class.

The third classifier was MTDR (Multiple Three-
Descriptor Representation) algorithm [16]. This
classifier was similar to M-ROCCHIO in that multiple
concept classes were represented in multiple
descriptors. Unlike M-ROCCHIO, the MTDR classifier
used its own built-in algorithm for identifying the
concept classes.

The ROCCHIO and MTDR classifiers learned a
single stream. The M-ROCCHIO algorithm learned
multiple streams; each stream was learned by a
separate descriptor and contained instances of the
same class with respect to concept classes RC. All
streams were generated from the instance set RI and
were ordered based on the instance arrival times.

The three classifiers performed a ranking based
classification on a given test set. The score of a new
instance was calculated according to the cosine
similarity metric [12] with respect to the learned
concepts. For those with multiple descriptor
representations (e.g. M-ROCHHIO and MTDR), the
score was based on the highest similarity akin to the
nearest neighbor classification.

Results

Figures 4 and 5 show the performance over time
from learning data streams that contain five percent of
labeled instances on the second tracking task. The
PLD+UNLABELED-DATA results were obtained by
running the classifiers using the instance sets
generated by the concept tracker algorithm. In the
absence of labeled data, as shown by the figures, the
performances improve as expected as more relevant
unlabeled data become available from the streams.

Figure 4. Rocchio’s accuracies on the 2nd tracking

task.

Figure 5. MTDR’s accuracies on the 2nd tracking

task.

Figure 6. Performance comparison on the 1st

tracking task.

Figure 7. Performance comparison on the 2nd

tracking task.

JURNAL INFORMATIKA VOL. 8, NO. 1, MEI 2007: 54 - 62

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://www.petra.ac.id/~puslit/journals/dir.php?DepartmentID=INF

60

Using the same data sets provided by the concept
tracker algorithm, the system’s performances could be
significantly affected by the classifier employed.
Figure 6 depicts the performance comparison among
the three classifiers on the first tracking task, i.e.
tracking the evolution of single target concept. All
classifiers have the capability for learning at least a
single target concept so that their performances are
expected to be comparable to one another on this task.
This expectation, as indicated by Figure 6, is satisfied
in the case of the ROCCHIO and MTDR performances.
The M-ROCCHIO performances are slightly worse
than the others.

Figure 7 shows the system’s performances on the
second tracking task, i.e. tracking the evolution of
three target concepts. In contrast to the first tracking
task, the M-ROCCHIO classifier performs better than
the other two classifiers. The observation that the
ROCCHIO performances are relatively much worse is
not surprising because this classifier lacks the
representational power needed for learning multiple
target concepts.

Table 5 and Table 6 summarize the experiment
results obtained by averaging the system accuracies
from the beginning of tracking cycle to the end. The
tables reveal that incorporating unlabeled data always
improves the average accuracies with respect to the
baseline performances. Increasing the portion of
labeled data in the stream does not seem to result in a

full recovery of performance as achieved from
learning with complete (100 PERCENT) labeled data.
However, the fact that highest performance gains are
obtained from learning with the least amount of
labeled data is very encouraging because this is the
case that is being addressed by the paper.

Further observations reveal that the data sets
generated by the concept tracker algorithm contain
19% noise in the first tracking task and 5% in the
second tracking task on the averages. These explain
why M-ROCCHIO performs worst in the first task but it
performs best in the second task. The M-ROCCHIO
algorithm utilizes the concept classes identified by the
concept tracker algorithm verbatim so that the quality
of data set generated by the concept tracker algorithm
directly affects the M-ROCCHIO performance. On the
other hand, the MTDR classifier independently learns
the class of each instance that makes this classifier less
susceptible to noise.

RELATED WORKS

STAGGER was the first incremental learning
system that dealt with concept drift problem by
thresholding concept weights [13]. Widmer and Kubat
developed a family of FLORA learning algorithms
[14]. The system employed an adaptive window
adjustment heuristic for flexibly responding to concept
drift, reused previously learned stable concepts and

Table 5. The summary of experiment results on the first tracking task. The numbers following the “+”s
within parentheses denote the performance gains achieved by incorporating unlabeled data over
the baseline performances on the same amount of labeled data observed and the same classifier
employed.

Average Accuracy (%)
MTDR Rocchio

Amount of
Labeled Data

Labeled Data
(Baseline)

Labeled +
Unlabeled Data

Labeled Data
(Baseline)

Labeled +
Unlabeled Data

M-Rocchio
Labeled +

Unlabeled Data
5 Percent 63.00 78.91 (+25.3%) 46.90 77.66 (+65.6%) 74.59
10 Percent 74.10 81.01 (+9.3%) 60.75 82.13 (+35.2%) 79.24
25 Percent 79.07 82.14 (+3.9%) 70.52 82.00 (+16.3%) 78.54

100 Percent 86.96 − 79.82 − −

Table 6. The summary of experiment results on the second tracking task.

Average Accuracy (%)
MTDR Rocchio M-Rocchio

Amount of
Labeled Data

Labeled Data
(Baseline)

Labeled + Unlabeled
Data

Labeled Data
(Baseline)

Labeled +
Unlabeled Data

Labeled +
Unlabeled Data

5 Percent 71.13 78.50 (+10.4%) 61.63 68.11 (+10.5%) 81.26
10 Percent 75.61 80.93 (+7.0%) 68.06 69.85 (+2.6%) 83.44
25 Percent 77.72 80.87 (+4.1%) 69.07 71.56 (+3.6%) 81.89
100 Percent 86.07 − 75.14 − −

Widyantoro, Exploiting Unlabeled Data In Concept Drift Learning

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://www.petra.ac.id/~puslit/journals/dir.php?DepartmentID=INF

61

handled the presence of noise. In more recent work,
Widmer exploited contextual attributes on a fixed
window size for tracking context changes through
meta-learning [15]. SPLICE was perhaps the first
concept drift system that employed an off-line
approach, e.g. using Quinlan’s C4.5, for identifying
hidden contexts [6]. Tracking the evolution of user
interests is an instance problem of concept drift
learning in information-filtering domains. Klinken-
berg and Joachims also employed an adaptive
window adjustment heuristic for learning changing
user interests but used support vector machine (SVM)
as the underlying classifier [10]. Their method worked
on an input stream that arrived in batches. Learning
the dynamics of user preference had also been
developed using three-descriptor representations [16].
The algorithm employed an implicit windowing
technique (i.e. by decaying older examples), which
combined large and small windows.

CONCLUSIONS

This paper has described the computational
framework for incorporating unlabeled data in concept
drift learning and has presented its evaluation on
information-filtering domains. In the absence of
labeled data, the system improves its performance
over time as relevant unlabeled data become available.
The framework offers a flexible architecture that
allows the classifier to be tailored to target applica-
tions. Although the soundness of the concept tracker
algorithm is obvious, its effectiveness depends on the
method for identifying instance classes, the concept
formation system used for building the concept
hierarchy, and the classifier employed for concept
learning. This leaves a lot of room for improvement.

Acknowledgement

The author would like to thank the reviewers for
their useful comments and suggestions.

REFERENCES

1. Bartlett, P.L., David, S.B., & Kulkarni, S.R.,

Learning Changing Concepts by Exploiting the
Structure of Change. Machine Learning, 41,
2000, pp.153-174.

2. Blum, A., & Mitchell, T. M., Combining Labeled
and Unlabeled Data with Co-Training. Procee-
dings of the 11th Annual Conference on
Computational Learning Theory, 1998, pp. 92-
100.

3. Blum, A., & Chawla, S., Learning from Labeled
and Unlabeled Data using Graph Mincuts.
Proceedings of the 18th International Conference
on Machine Learning, 2001, pp. 19-26.

4. Dempster, A. P., Laird, N. M., & Rubin, D. B.,
Maximum Likelihood from Incomplete Data via
the EM Algorithms. Journal of the Royal
Statistical Society, Series B., 39(1), 1977, pp. 1-
38.

5. Gabbay, D. M., Hogger, C. J., & Robinson, J. A.
Handbook of Logic in AI and Logic Pro-
gramming: V4. Epistemic and Temporal
Reasoning. New York: Oxford University Press,
1995.

6. Harries, M.B., Sammut, C., & Horn, K., Ex-
tracting Hidden Context. Machine Learning,
32(2), 1998, 101-128.

7. Helmbold, D. P. & Long, P. M., Tracking
Drifting Concepts by Minimizing Disagreement.
Machine Learning, 14, 1994, pp. 27-45.

8. Jain, A.K. & Dubes, R.C., Algorithms for
Clustering Data. Englewood Cliffs: Prentice
Hall, 1988.

9. Jansen, B. J., Spink, A., & Saracevic, T., Real
life, real users and real needs: A study and
analysis of users queries on the Web. Information
Processing and Management, 36 (2), 2000, pp.
207-227.

10. Klinkenberg, R., & Joachims, T., Detecting
Concept Drift with Support Vector Machine.
Proceedings of the 17th International Conference
on Machine Learning, 2000, pp. 487-494.

11. Rocchio, J.J., Relevance Feedback in Information
Retrieval. In G. Salton, The SMART Retrieval
System: Experiments in Automatic Document
Processing Englewood Cliffs: Prentice-Hall,
1971. pp. 313-323.

12. Salton, G., & McGill, M. J., Introduction to
Modern Information Retrieval. N.Y.: McGraw-
Hill, 1983.

13. Schlimmer, J.C., & Granger, R.H., Beyond Incre-
mental Processing: Tracking Concept Drift.
Proceedings of the 5th National Conference on
Artificial Intelligence, 1986, pp. 502-507.

14. Widmer, G., & Kubat, M., Learning in the
Presence of Concept Drift and Hidden Contexts.
Machine Learning, 23(1), 1996, pp. 69-101.

JURNAL INFORMATIKA VOL. 8, NO. 1, MEI 2007: 54 - 62

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://www.petra.ac.id/~puslit/journals/dir.php?DepartmentID=INF

62

15. Widmer, G., Tracking Context Changes through
Meta-Learning”. Machine Learning, 27(3), 1997,
pp. 259-286.

16. Widyantoro, D. H., Ioerger, T. R., & Yen, J.,
Learning User Interest Dynamics with a Three-
Descriptor Representation. Journal of the Ameri-
can Society for Information Science, 52(3), 2001,
pp. 212-225.

17. Widyantoro, D. H., Ioerger, T. R., & Yen, J., An
Incremental Approach to Building a Cluster
Hierarchy. Proceedings of the 2nd IEEE
International Conference on Data Mining, 2002.

18. Widyantoro, D.H., Exploiting the Homogeneity
of Density in Incremental Hierarchical Cluster-
ing. Proceedings ITB Series B: Engineering
Science, Vol 38B, No. 2, 2006, pp. 79-99.

